METHODS OF DETECTING FRAUD USING ANALYTICAL TOOLS
Abstract and keywords
Abstract (English):
This article examines the evolution of fraudulent schemes in the context of the digital transformation of the economy, which is accompanied by a transition from localized manipulation to complex ecosystem attacks using machine learning algorithms and artificial intelligence vulnerabilities. This necessitates the development of proactive countermeasures that integrate predictive analytics, network analysis of transaction chains, and real-time behavioral profiling to minimize potential damage. It also analyzes modern analytical tools, including machine learning, natural language processing, and statistical approaches, in the context of creating intelligent platforms capable of multidimensional analysis of heterogeneous data and ensuring the proactive detection of complex fraudulent structures.

Keywords:
fraud, digital economy, machine learning, network analysis, analytical tools, risk management, artificial intelligence
References

1. Vasilkova V.V., Legostaeva N.I. Digital technologies as tools of cyber fraud: a typological approach // Theory and practice of social development. 2023. No. 9. pp. 16-23.

2. United Nations Convention Against Corruption / Paper of United Nations Office On Drugs And Crime. UN, Vienna - New York, 2004. URL: https://www.unodc.org/documents/brussels/UN_Convention_Against_Corruption.pdf.

3. Pavlidis Georgios. Financial action task force and the fight against money laundering and the financing of terrorism: Quo vadimus? // Journal of Financial Crime. - 2020. - Vol. 28, no. 3. - Pp. 765–773. — DOIhttps://doi.org/10.1108/JFC‑09‑2019‑0124.

4. Criminal Code of the Russian Federation of 13.06.1996 N 63-FZ (as amended on 31.07.2025) (as amended and supplemented, entered into force on 01.09.2025) [Electronic resource]. URL: https://www.consultant.ru/document/cons_doc_LAW_10699/8012ecdf64b7c9cfd62e90d7f55f9b5b7b72b755/.

5. Federal Law "On Counteracting the Legalization (Laundering) of Criminally Obtained Incomes and the Financing of Terrorism" of 07.08.2001 N 115-FZ [Electronic resource]. URL: https://www.consultant.ru/document/cons_doc_LAW_32834/.

6. Federal Law "On Personal Data" of July 27, 2006 N 152-FZ (latest revision) [Electronic resource]. URL: https://www.consultant.ru/document/cons_doc_LAW_61801/.

7. Kostyunkov D. S. Systematic analytics of big data to ensure the security of financial transactions and prevent fraud // Science Bulletin. 2025. No. 3 (84). P. 420-427.

8. Impact of tax approaches, standards, and rules on the parameters of tax policy in EU member states / S. Aleksina, I. Otcheskiy, O. Petrova [et al.] // Relações Internacionais do Mundo Atual. – 2024. – Vol. 3, No. 45. – P. 687-698. – DOIhttps://doi.org/10.21902/Revrima.v3i45.7075. – EDN IBGTYN.

9. Recycling of Municipal Solid Waste in Construction / S. V. Muzalev, E. V. Nikiforova, O. A. Petrova [et al.] // Construction Materials and Products. – 2023. – Vol. 6, No. 5. – DOIhttps://doi.org/10.58224/2618-7183-2023-6-5-7. – EDN IQJNPZ.

10. Analyzing the Development of Russia's Agricultural Sector to Identify Import Needs and Product Range / M. Tolmachev, A. Tsypin, E. Gerasimova [et al.] // Journal of Global Innovations in Agricultural Science. – 2025. – Vol. 13, No. 3. – P. 955-963. – DOIhttps://doi.org/10.22194/JGIAS/25.1618. – EDN UWLWKH.

11. Tolmachev, M. N. Employment and unemployment in agriculture of the North Caucasus Federal District / M. N. Tolmachev, G. I. Gadzhimirzoev, M. M. Shailieva // Bulletin of Kazan State Agrarian University. – 2023. – Vol. 18, No. 4(72). – P. 163-169. – DOIhttps://doi.org/10.12737/2073-0462-2023-163-169. – EDN DPDLOL.

12. Tsypin, A. P. Retrospective analysis of butter production in the post-Soviet countries / A. P. Tsypin // Dairy industry. - 2025. - No. 4. - Pp. 74-83. - DOI 10.21603 / 1019-8946-2025-4-48. - EDN SQOHED.

13. Kurilova, A. A. Assessment of financial accessibility of the northern regions of Russia / A. A. Kurilova // Finance: theory and practice. - 2025. - Vol. 29, No. 4. - Pp. 252-261. - DOI 10.26794 / 2587-5671-2025-29-4-252-261. - EDN UFOCLO.

14. Turgaeva, A. A. Modern approaches to assessing the risks of money laundering and terrorist financing in the context of the development of digital financial assets / A. A. Turgaeva // Finance: Theory and Practice. - 2025. - Vol. 29, No. 4. - P. 100-111. - DOIhttps://doi.org/10.26794/2587-5671-2025-29-4-100-111. - EDN LUMGBL.


Login or Create
* Forgot password?